News Without Borders: Domain Adaptation of Multilingual Sentence Embeddings for Cross-lingual News Recommendation

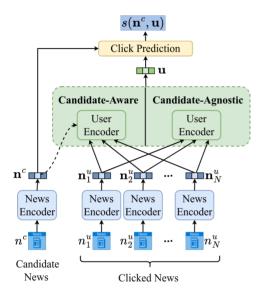
Andreea Iana¹, Fabian David Schmidt², Goran Glavaš², Heiko Paulheim¹

¹Data and Web Science Group, University of Mannheim, Germany ²Center for Artificial Intelligence and Data Science, University of Würzburg, Germany

News Recommendation

Personalized (neural) news recommendation:

articles tailored to users' preferences

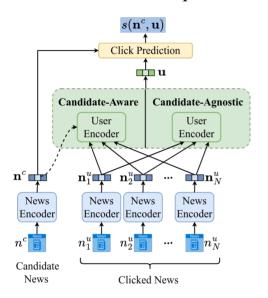


Increasingly language-diverse & polyglot online user community

News Recommendation

Personalized (neural) news recommendation:

articles tailored to users' preferences



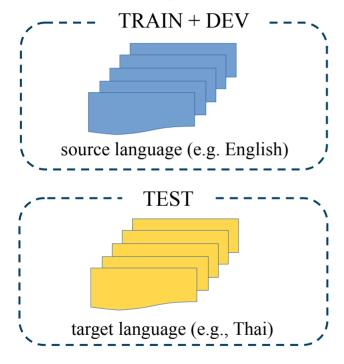
Increasingly language-diverse & polyglot online user community

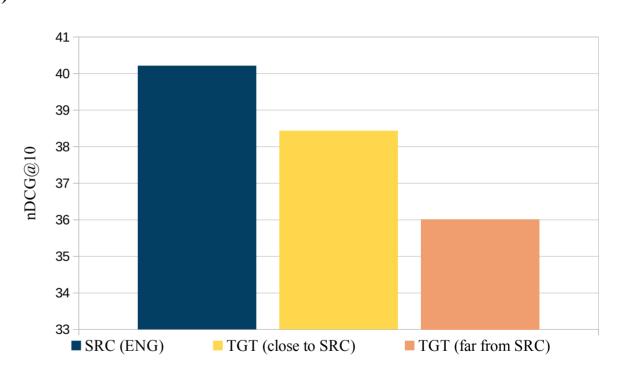
Neural news recommenders (NNRs) need to:

- 1. Generate suitable, balanced, diverse recommendations for users irrespective of language
- 2. Perform accurately in cold-start scenarios (e.g., no news data, no user click logs)

Multilinguality in News Recommendation

Zero-shot Cross-lingual Transfer (ZS-XLT)





Considerable performance loss in ZS-XLT recommendation

Multilinguality in News Recommendation

NNRs typically fine-tune the backbone language model (LM) on task-specific data

Resource-intensive task (e.g., fine-tuning for too many languages)

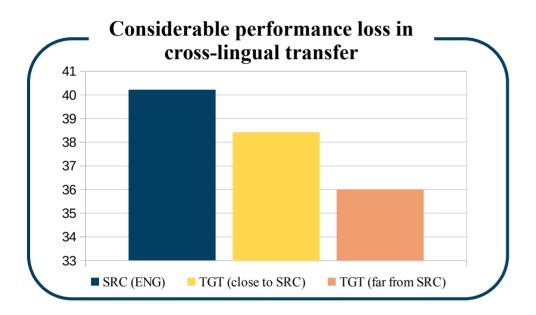
Cold-start scenario: little / no news-click data available about new users

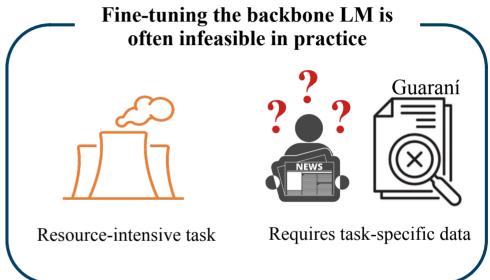
In practice, little data is available for some target languages (e.g., low-resource ones)

Fine-tuning the backbone LM is often infeasible in practice

Multilinguality in News Recommendation

News Recommendation Needs Specialized LMs!



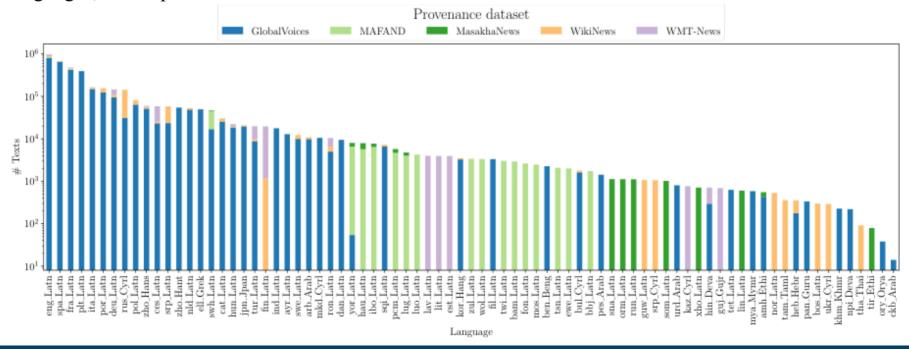


NaSE: massively multilingual sentence encoder (LaBSE), adapted to the news domain with auto-encoding & machine translation objectives

Multilingual Corpora for Domain Adaptation

Polynews

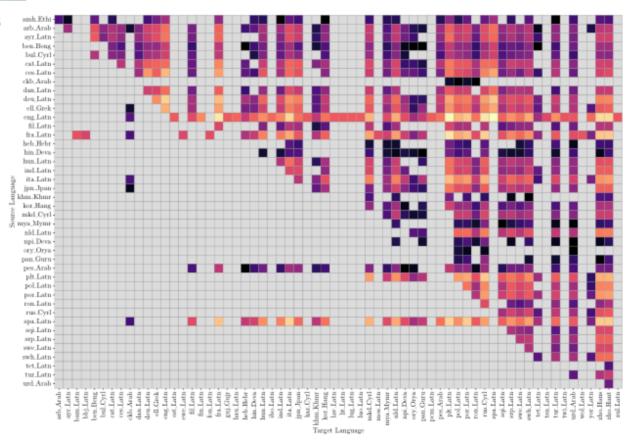
- → Compiled from 5 sources
- → Data cleaning: duplicate removal, language detection, short text removal, MinHash near de-duplication
- → Size: 3.9 million news
- → 77 languages, 19 scripts



Multilingual Corpora for Domain Adaptation

PolynewsParallel

- → Compiled from 3 parallel sources (e.g., MAFAND, WMT-News, Global Voices)
- → Data cleaning: duplicate removal, language detection, short text removal, MinHash near deduplication
- → Size: 5.3 million news
- → 64 languages, 17 scripts

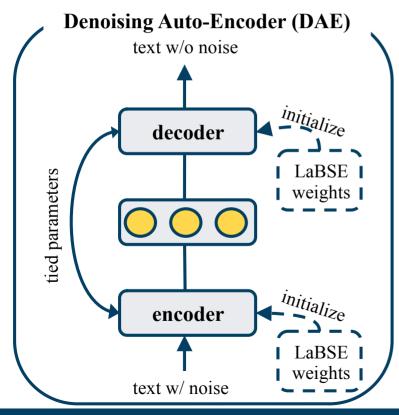


Domain Adaptation

→ Sequence-to-sequence training of sentence encoder (initialized with LaBSE weights) on the multilingual corpora

Domain Adaptation

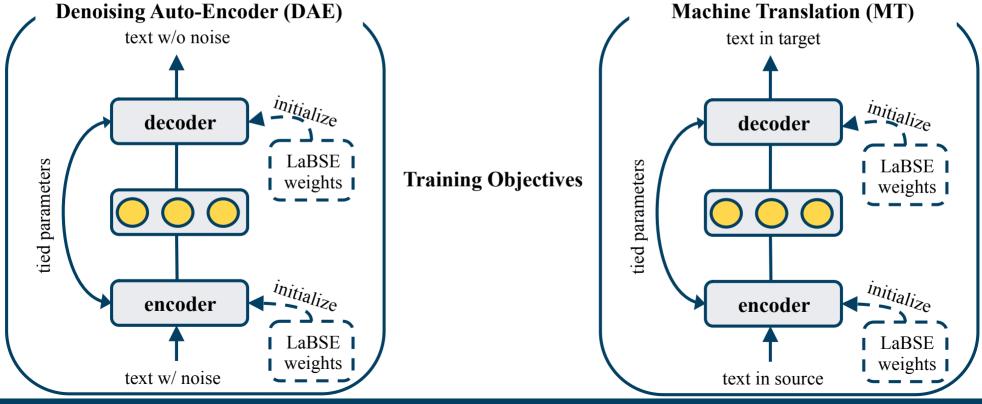
→ Sequence-to-sequence training of sentence encoder (initialized with LaBSE weights) on the multilingual corpora



Training Objectives

Domain Adaptation

→ Sequence-to-sequence training of sentence encoder (initialized with LaBSE weights) on the multilingual corpora



Training Details

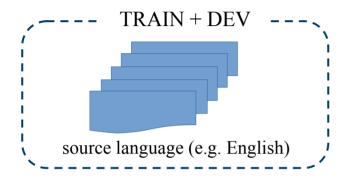
- → Validation on cross-lingual news recommendation:
 - → News encoder: *frozen* NaSE encoder
 - → User encoder: late fusion (mean-pooling of dot-product scores between candidate and clicked news embeddings)
- → Validation data: small MIND (English) and multilingual xMIND (14 languages, machine-translated news from MIND)

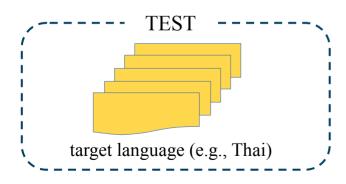
Training Details

- → Validation on cross-lingual news recommendation:
 - → News encoder: frozen NaSE encoder
 - → User encoder: late fusion (mean-pooling of dot-product scores between candidate and clicked news embeddings)
- → Validation data: small MIND (English) and multilingual xMIND (14 languages, machine-translated news from MIND)

Variants	Training objectives	PolyNews	PolyNewsParallel
NaSE _{DAE}	DAE w/ corrupted input	\checkmark	X
NaSE _{MT}	MT (source \rightarrow target)	X	\checkmark
NaSE _{DAE+MT}	DAE or MT (per batch)	X	\checkmark
$NaSE_{DAE \rightarrow MT}(NaSE)$	DAE, then MT (sequentially)	\checkmark	\checkmark

Task: ZS-XLT Recommendation





Setup: Backbone LMs

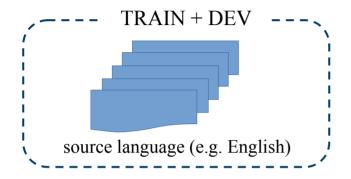
NE Backbone	Type	#Params
XLM-RoBERTa _{large}	Language model	559 M
LaBSE	Contanas anasdar	471 M
NaSE	Sentence encoder	471 M

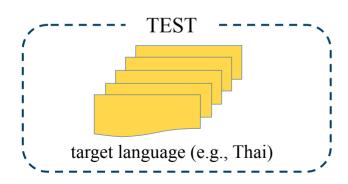
Setup: Data

- → MIND (small)
- → xMIND (small): statistics *per language* (i.e., 14 languages

	Train	Validation	Test
# News	51,282	51,282	42,416
# Users	45,214	19,703	48,593
# Impressions	124,229	29,498	70,938

Task: ZS-XLT Recommendation





Setup: Backbone LMs

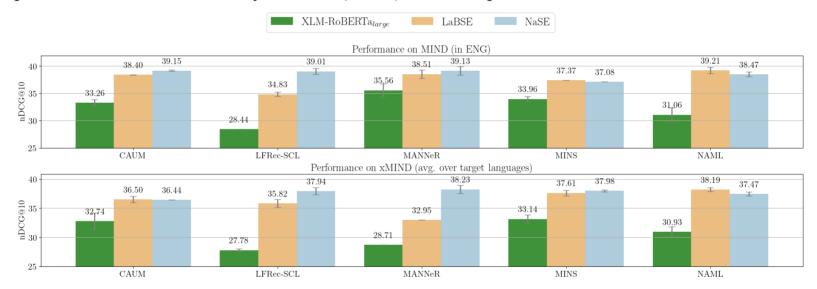
NE Backbone	Type	#Params
XLM-RoBERTa _{large}	Language model	559 M
LaBSE	Contanas anasdar	471 M
NaSE	Sentence encoder	471 M

Setup: Models

- → Variety of news encoders & user encoders
- → LFRec-SCL: strong baseline w/ late fusion (LF) as user encoder

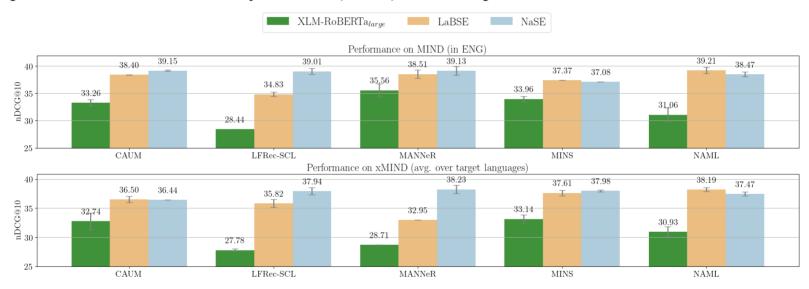
Frozen News Encoder (NE)

Setup: No updates to backbone LM, only to other (fewer) trainable parameters



Frozen News Encoder (NE)

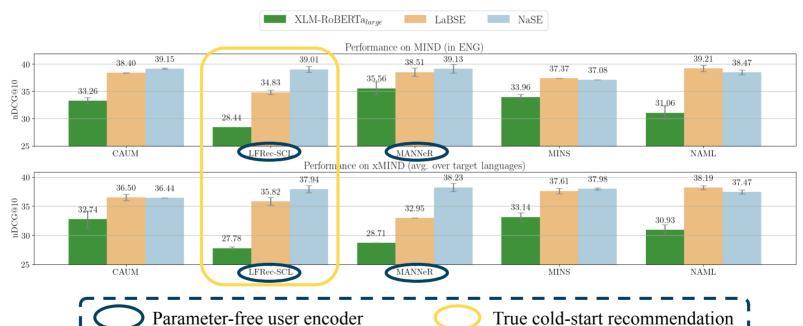
Setup: No updates to backbone LM, only to other (fewer) trainable parameters

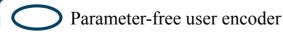


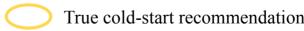
- → XLM-RoBERTa_{large}-based recommenders yield the weakest performance across all language.
- → NaSE vs. LaBSE embeddings: + 2.58% on English & + 4.17% cross-lingually (averaged across 14 languages).

Frozen News Encoder (NE)

Setup: No updates to backbone LM, only to other (fewer) trainable parameters





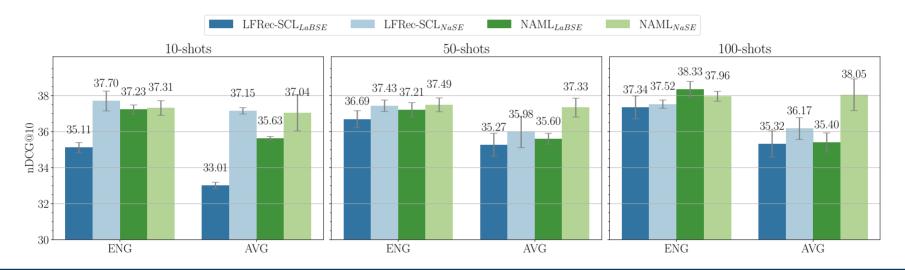


Domain specialization removes the need for supervised training of neural news recommenders on task-specific data.

Fine-tuned News Encoder (NE)

Setup: Updates to all trainable parameters on English task-specific data

→ few task-specific examples



- → NaSE effective in ZS-XLT recommendation in low-data setups.
- → Fine-tuning on news recommendation also leads to domain adaptation, but assumes availability of news & user-click data.

Conclusion

- Domain-specialization of a multilingual sentence encoder (i.e., NaSE) removes the need for supervised training of neural news recommenders.
- NaSE is highly effective in ZS-XLT recommendation in cold-start & low-data setups.

LFRec-SCL: simple & strong baseline based on frozen NaSE embeddings & late fusion.

PolyNewsParallel

Code Contact