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Personalized (neural) news recommendation:
articles tailored to users’ preferences

Increasingly language-diverse & polyglot 
online user community



  

News Recommendation

09/04/2025 2ECIR 2025 / Background

Personalized (neural) news recommendation:
articles tailored to users’ preferences

Increasingly language-diverse & polyglot 
online user community

Neural news recommenders (NNRs) need to:

1. Generate suitable, balanced, diverse recommendations for users irrespective of language

2. Perform accurately in cold-start scenarios (e.g., no news data, no user click logs)



  

Multilinguality in News Recommendation
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Considerable performance loss in ZS-XLT recommendation

source language (e.g. English)

target language (e.g., Thai)

TRAIN + DEV

TEST

Zero-shot Cross-lingual Transfer (ZS-XLT)



  

NNRs typically fine-tune the backbone language model (LM) on task-specific data

Multilinguality in News Recommendation
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Fine-tuning the backbone LM is often infeasible in practice

Resource-intensive task (e.g., fine-
tuning for too many languages)

Cold-start scenario: little / no news-click 
data available about new users

In practice, little data is available for some 
target languages (e.g., low-resource ones)



  

News Recommendation Needs Specialized LMs!

Multilinguality in News Recommendation
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Considerable performance loss in 
cross-lingual transfer

Fine-tuning the backbone LM is 
often infeasible in practice

Resource-intensive task Requires task-specific data

?

NaSE: massively multilingual sentence encoder (LaBSE), adapted to the 
news domain with auto-encoding & machine translation objectives 



  

Multilingual Corpora for Domain Adaptation

09/04/2025 6ECIR 2025 / Corpora

Polynews

➔ Compiled from 5 sources
➔ Data cleaning: duplicate removal, language detection, short text removal, MinHash near de-duplication
➔ Size: 3.9 million news
➔ 77 languages, 19 scripts



  

Multilingual Corpora for Domain Adaptation
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PolynewsParallel

➔ Compiled from 3 parallel sources 
(e.g., MAFAND, WMT-News, 
Global Voices)

➔ Data cleaning: duplicate removal, 
language detection, short text 
removal, MinHash near de-
duplication

➔ Size: 5.3 million news

➔ 64 languages, 17 scripts

ECIR 2025 / Corpora



  

NaSE: News-adapted Sentence Encoder
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➔ Sequence-to-sequence training of sentence encoder (initialized with LaBSE weights) on the multilingual corpora

ECIR 2025 / NaSE

Domain Adaptation
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NaSE: News-adapted Sentence Encoder
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➔ Sequence-to-sequence training of sentence encoder (initialized with LaBSE weights) on the multilingual corpora
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Training Objectives
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NaSE: News-adapted Sentence Encoder
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➔ Sequence-to-sequence training of sentence encoder (initialized with LaBSE weights) on the multilingual corpora
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Domain Adaptation
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NaSE: News-adapted Sentence Encoder
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➔ Validation on cross-lingual news recommendation: 
➔ News encoder: frozen NaSE encoder 
➔ User encoder: late fusion (mean-pooling of dot-product scores between candidate and clicked news embeddings) 

➔ Validation data: small MIND (English) and multilingual xMIND (14 languages, machine-translated news from 
MIND)

Training Details



  

NaSE: News-adapted Sentence Encoder
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Variants Training objectives PolyNews PolyNewsParallel

NaSEDAE DAE w/ corrupted input ✓ ✗
NaSEMT MT (source → target) ✗ ✓
NaSEDAE+MT DAE or MT (per batch) ✗ ✓
NaSE DAE → MT (NaSE) DAE, then MT (sequentially) ✓ ✓

Training Details

➔ Validation on cross-lingual news recommendation: 
➔ News encoder: frozen NaSE encoder 
➔ User encoder: late fusion (mean-pooling of dot-product scores between candidate and clicked news embeddings) 

➔ Validation data: small MIND (English) and multilingual xMIND (14 languages, machine-translated news from 
MIND)



  

Zero-Shot Cross-lingual Transfer
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Task: ZS-XLT Recommendation Setup: Backbone LMs

source language (e.g. English)

target language (e.g., Thai)

TRAIN + DEV

TEST

Setup: Data

➔ MIND (small) 
➔ xMIND (small): statistics per language (i.e., 14 

languages 

NE Backbone Type #Params

XLM-RoBERTalarge Language model 559 M

LaBSE
Sentence encoder

471 M

NaSE 471 M
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Task: ZS-XLT Recommendation Setup: Backbone LMs

source language (e.g. English)

target language (e.g., Thai)

TRAIN + DEV

TEST

NE Backbone Type #Params

XLM-RoBERTalarge Language model 559 M

LaBSE
Sentence encoder

471 M

NaSE 471 M

Setup: Models

➔ Variety of news encoders & user encoders
➔ LFRec-SCL: strong baseline w/ late fusion (LF) as 

user encoder
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Zero-Shot Cross-lingual Transfer
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Frozen News Encoder (NE)

Setup: No updates to backbone LM, only to other (fewer) trainable parameters
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Zero-Shot Cross-lingual Transfer
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Frozen News Encoder (NE)

Setup: No updates to backbone LM, only to other (fewer) trainable parameters

➔ XLM-RoBERTalarge-based recommenders yield the weakest performance across all language.
➔ NaSE vs. LaBSE embeddings: + 2.58% on English & + 4.17% cross-lingually (averaged across 14 languages).
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Zero-Shot Cross-lingual Transfer
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Frozen News Encoder (NE)

Setup: No updates to backbone LM, only to other (fewer) trainable parameters

Parameter-free user encoder True cold-start recommendation

Domain specialization removes the need for supervised training of neural 
news recommenders on task-specific data.
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Zero-Shot Cross-lingual Transfer
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Fine-tuned News Encoder (NE)
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Setup: Updates to all trainable parameters on English task-specific data
➔ few task-specific examples

➔ NaSE effective in ZS-XLT recommendation in low-data setups.

➔ Fine-tuning on news recommendation also leads to domain adaptation, but assumes availability of news & 

user-click data.
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Conclusion
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NaSE PolyNewsParallel PolyNews Code Contact

  Domain-specialization of a multilingual sentence encoder (i.e., NaSE) removes the need for 
supervised training of neural news recommenders.1

  NaSE is highly effective in ZS-XLT recommendation in cold-start & low-data setups. 2

  LFRec-SCL: simple & strong baseline based on frozen NaSE embeddings & late fusion.3
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