

MIND Your Language: A Multilingual Dataset for Crosslingual News Recommendation

Andreea Iana¹, Goran Glavaš², Heiko Paulheim¹

¹Data and Web Science Group, University of Mannheim, Germany ²Center for Artificial Intelligence and Data Science, University of Würzburg, Germany

Multilinguality in News & Recommendation

Multilinguality in News & Recommendation

Multilinguality in News & Recommendation

26/09/2024

Main hyperparameters chosen on subset of Global Voices^[2] dataset (best averaged over all language pairs overlapping with xMIND)

KI 2024 / xMIND Dataset

Code	Language	Script	Macro-area	Family	Genus	Total Speakers (M)	Res.
SWH	Swahili	Latin	Africa	Niger-Congo	Bantu	71.6	high
SOM	Somali	Latin	Africa	Afro-Asiatic	Lowland East Cushitic	22.0	low
CMN	Mandarin Chinese	Han	Eurasia	Sino-Tibetan	Sinitic	1,138.2	high
JPN	Japanese	Japanese	Eurasia	Japonic	Japanesic	1,234.5	high
TUR	_Turkish	Latin	Eurasia	Altaic	Turkic	90.0	high
TAM	Tamil	Tamil	Eurasia	Dravidian	Dravidian	86.6	low
VIE	Vietnamese	Latin	Eurasia	Austro-Asiatic	Vietic	85.8	high
THA	Thai	Thai	Eurasia	Tai-Kadai	Kam-Tai	60.8	high
RON	Romanian	Latin	Eurasia	Indo-European	Romance	24.5	high
FIN	Finnish	Latin	Eurasia	Uralic	Finnic	5.6	high
KAT	Georgian	Georgian	Eurasia	Kartvelian	Georgian-Zan	3.9	low
HAT	Haitian Creole	Latin	North-America	Indo-European	Creoles and Pidgins	13.0	low
IND	Indonesian	Latin	Papunesia	Austronesian	Malayo-Sumbawan	199.1	high
GRN	Guarani	Latin	South America	Tupian	Maweti-Guarani	(L1 only) 6.7	low

✓ 14 languages from 13 families

✓ 5 low-resource languages

✓ 6 scripts from 3 families

X Cultural nuances ignored

Diversity Indices^[3]

Typology

 quantifies the presence/absence of a linguistic property in a language based on predefined typological binary features

Family

number of distinct language families in the sample size

Geography

entropy of the distribution of languages in the sample over
6 geographic macro-areas of the world

Diversity Indices^[3]

Typology

 quantifies the presence/absence of a linguistic property in a language based on predefined typological binary features

Family

number of distinct language families in the sample size

Geography

entropy of the distribution of languages in the sample over
6 geographic macro-areas of the world

Other Multilingual Datasets

NeMig^[4]

- → Languages: ENG, DEU
- Focus on one topic (refugee migration)
- → Open-source dataset

Wu et al.^[5]

- Languages: ENG, DEU, FRA, ITA, JPN, SPA, KOR
- Proprietary dataset

Diversity Indices^[3]

Typology

 quantifies the presence/absence of a linguistic property in a language based on predefined typological binary features

Family

number of distinct language families in the sample size

Geography

entropy of the distribution of languages in the sample over
6 geographic macro-areas of the world

NeMig^[4]

- → Languages: ENG, DEU
- Focus on one topic (refugee migration)

Other Multilingual Datasets

Open-source dataset

Wu et al.^[5]

- Languages: ENG, DEU, FRA, ITA, JPN, SPA, KOR
- Proprietary dataset

	Range	xMIND	NeMig	Wu et al.
Typology	[0, 1]	0.42	0.05	0.31
Family	[0, 1]	0.93	0.50	0.43
Geography	[0, ln 6]	1.13	0.00	0.00

xMIND: Translation Quality

xMIND: Translation Quality

xMIND: Translation Quality

KI 2024 / xMIND Dataset

Data: 50 news from xMIND used for testing, sampled according to (i) categorical & (ii) length distribution

Annotators: 2 per target language, native speakers of target language & fluent in English

Setup: randomized source of translations during annotation to avoid position bias

Data: 50 news from xMIND used for testing, sampled according to (i) categorical & (ii) length distributionAnnotators: 2 per target language, native speakers of target language & fluent in EnglishSetup: randomized source of translations during annotation to avoid position bias

Intelligibility (how acceptable is the translation)

Data: 50 news from xMIND used for testing, sampled according to (i) categorical & (ii) length distribution

Annotators: 2 per target language, native speakers of target language & fluent in English

Setup: randomized source of translations during annotation to avoid position bias

Fidelity (the extent to which the original information is retained in the translation)

Data: 50 news from xMIND used for testing, sampled according to (i) categorical & (ii) length distributionAnnotators: 2 per target language, native speakers of target language & fluent in EnglishSetup: randomized source of translations during annotation to avoid position bias

Pairwise comparison (which translation is better)

KI 2024 / xMIND Dataset

Evaluation Setup

News Consumption Patterns

Zero-shot Cross-lingual Transfer (ZS-XLT)

Monolingual consumption

Few-shot Cross-lingual Transfer (FS-XLT)

Simulated bilingual consumption

Evaluation Setup

Few-shot Cross-lingual Transfer (FS-XLT)

News Consumption Patterns

Monolingual consumption

Simulated bilingual consumption

Evaluation Setup

Few-shot Cross-lingual Transfer (FS-XLT)

News Consumption Patterns

Monolingual consumption

Simulated bilingual consumption

26/09/2024

KI 2024 / Cross-lingual News Recommendation

Evaluation Setup

Zero-shot Cross-lingual Transfer (ZS-XLT)

News Consumption Patterns

Few-shot Cross-lingual Transfer (FS-XLT)

Simulated bilingual consumption

Evaluation Setup

Zero-shot Cross-lingual Transfer (ZS-XLT)

Few-shot Cross-lingual Transfer (FS-XLT)

News Consumption Patterns

Evaluation Setup

26/09/2024

News Consumption Patterns

Evaluation Setup

News Consumption Patterns

26/09/2024

Evaluation Setup

News Consumption Patterns

Zero-Shot Cross-Lingual News Recommendation

Monolingual News Consumption

News recommenders suffer substantial performance losses under zero-shot cross-lingual transfer.

KI 2024 / Cross-lingual News Recommendation

Zero-Shot Cross-Lingual News Recommendation

Monolingual News Consumption

Lowest performance for low-resource and unseen languages.

KI 2024 / Cross-lingual News Recommendation

Few-Shot Cross-Lingual News Recommendation

Monolingual News Consumption

- Target language injection ameliorates performance losses from ZS-XLT_{MONO}
- But: over-representing one language hurts performance

- Target language injection is beneficial primarily for languages w/ the highest losses under ZS-XLT_{BILING}
- Not all recommenders benefit from few-shot transfer

Few-shot target-language injection during training shows limited benefits.

Recommenders' Robustness to Translations

Setup: Same experiments using data translated w/ open-source vs. commercial MT

- The quality of translations with the open-source MT is on par with those generated by SOTA commercial MT
- Translation quality has no significant effects on the recommenders' performance

→ News recommendation needs (more) diverse multilingual datasets

- → xMIND: open multi-parallel multilingual news recommendation dataset w/ 14 linguistically and geographically diverse languages, derived from the English MIND dataset using machine translation
- → Current recommenders suffer substantial performance losses under ZS-XLT
- → Few-shot target language injection during training brings limited gains

→ More research needed on multilingual and cross-lingual news recommendation

xMIND @ GitHub

xMIND @ HuggingFace

Contact

References

[1] Marta R Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. 2022. No language left behind: Scaling human-centered machine translation. *arXiv preprint arXiv:2207.04672* (2022).

[2] Jörg Tiedemann. 2012. Parallel Data, Tools and Interfaces in OPUS. In *Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)* (23-25), Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Mehmet Ugur Dogan, Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis (Eds.).
European Language Resources Association (ELRA), Istanbul, Turkey

[3] Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020. XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. 2362–2376.

[4] Andreea Iana, Mehwish Alam, Alexander Grote, Katharina Luwig, Philipp Müller, Christof Weinhardt, and Heiko Paulheim. 2023. NeMig-A Bilingual News Collection and Knowledge Graph about Migration. In *Proceedings of the Workshop on News Recommendation and Analytics co-located with RecSys 2023*.

[5] Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. 2021. Empowering news recommendation with pre-trained language models. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1652–1656.

[6] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Édouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised Cross-lingual Representation Learning at Scale. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*. 8440–8451